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SUMMARY 

A rapid-equilibrium model of affinity partitioning of multi-site proteins is 
described, that applies when long-range translatory movement of matrix-ligand 
groups is prevented by a rigid matrix. Two essential postulates are made: (1) the matrix 
ligands are distributed singly or in clusters within spherical bounds of the size of the 
protein molecule, and may be treated as a Poisson distribution; (2) due to the proximity 
of matrix ligands, binding of a protein molecule to a cluster is highly co-operative. 
Equations are derived that allow the predicted partitioning and chromatographic 
behaviour of this model to be examined and its properties described. Published data on 
the interaction of aldolase and phosphocellulose are re-interpreted in terms of the new 
theory. 

INTRODUCTION 

Early theoretical treatments of affinity chromatography were formulated on the 
assumption of a single interaction between protein and matrix-ligand, and were 
consequently applicable only to monomeric proteins or when the matrix-ligand was 
highly dilutedlv4. Since then the theory has been adapted to the case of multivalency, 
i.e. where an N-site (i.e. presumably oligomeric) protein molecule can establish from 
1 to N contacts with matrix-ligands - ’ l1 Theory appropriate to oligomeric proteins is . 
of particular importance, for several reasons, including: (1) the great majority of 
functional proteins, including many important enzymes, are oligomeric in structure; 
(2) current practice is to use highly-substituted column matrices (e.g. dye-ligand 
matrices) for protein purification, with the consequent increased likelihood of 
multivalent contacts; (3) since the Gibbs energy of binding is additive with respect to 
individual occupied sites, extremely tight binding to the matrix is possible in principle 
without loss in specificity; (4) quantitative affinity chromatography has been 
recommended for measuring protein-ligand binding constants, and it is important to 
ensure that the theoretical basis of such use is secure in the case of oligomeric proteins. 

In relation to a protein with identical sites, most of the afore-mentioned 
theoretical treatments of the multivalent case assume, explicitly or implicitly, one or 
both of the following postulates: (1) a single microscopic equilibrium binding constant 

0021-9673/88/$03.50 0 1988 Elsevier Science Publishers B.V. 



14 R. J. YON 

may be used for each successive interaction of a protein molecule with matrix-ligand; 
(2) all sites on the protein have access to the same concentration of matrix-ligand. 
Although they are valid for interactions of soluble ligand with protein, conceptual 
difficulties arise when these postulates are applied to ligands immobilised on rigid 
matrices. One difficulty arises from the uneven distribution of matrix-iigand groups at 
the molecular level, and their inability to diffuse. This uneven distribution and the size 
of the protein molecule set a limit on the number of matrix-ligand groups that can be 
bound by any individual protein molecule at a particular locus within the matrix. The 
equal-access assumption, discussed above, clearly is inappropriate for this situation. 
A second difficulty is the intuitive expectation that, while the probability of a first 
contact by a protein molecule within a static cluster of matrix-ligands will be the same 
as for contact with an isolated matrix-ligand, subsequent contacts within the cluster by 
the same molecule ought to have a higher probability due to proximity; in other words 
successive contacts within a cluster should show cooperativity. Of existing theoretical 
models, only that of Kyprianou and Yon7 implies such co-operativity. This model, 
however, is deficient in assuming a single uniform type of cluster. In a recent paper, 
Hubbler2 discusses the different but related problem of affinity chromatography of 
proteins with intrinsic co-operative binding properties, e.g. allosteric enzymes. 

A multivalency model that makes simple assumptions about the clustering of 
matrix-ligands, and about cooperativity in binding to the matrix, will now be 
described. 

THEORY 

Symbols 

F: 
R 

PI 
[Ml 
N 

ks 

Kh4 
[xl], [x21,. * *[xNl 

Kt, &...KN 

Total concentration of protein 
Concentration of all soluble protein forms 
Partitioning ratio, defined as [p,]/[PJ 
Total concentration of soluble ligand 
Total concentration of accessible matrix-ligand 
Number of identical ligand-binding sites per protein molecule 
Radius (nm) of protein molecule 
Microscopic (site) association constant for the binding of 
soluble ligand 
Microscopic (site) constant for binding of matrix-ligand 
Concentrations of clusters containing 1,2,. . .N matrix-ligands, 
respectively 
Stoichiometric (cluster) association constants for concerted 
binding of protein to clusters of 1,2,. . .N matrix-ligands, 
respectively 

All concentrations are in mol/l. Microscopic (site) constants and stoichiometric 
constants are defined according to Klotz l 3 . Other symbols will be defined as required. 

General description 
The present model is an extension of an earlier model’ in which the concept of 

concerted binding of a protein to a single type of matrix-ligand cluster was implicitly 
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proposed. The major present innovation is the assumption that the non-diffusible 
matrix groups are randomly distributed, thereby enabling the concentrations of 
“effective clusters” within this distribution to be computed by statistical means. An 
effective cluster is defined as a group of accessible matrix-ligands within the volume of 
space (assumed spherical) equivalent to that occupied by a protein molecule. Strictly, 
the matrix-ligands capable of binding to a protein molecule should be a subgroup 
within the cluster that satisfies steric requirements imposed by the protein, e.g. location 
at the apices of a tetrahedron. To simplify the mathematics, this restriction will be 
relaxed in the present treatment. The implications of this relaxation wiil be discussed 
later (see Discussion). 

Let Xi denote a cluster containing i accessible matrix-ligands, where i takes 
values from 1 to N. For any one of these cluster-types, protein-ligand complexes 
involving fewer than imatrix-ligands are neglected. This implies a concerted binding of 
all i matrix-ligands, i.e. a high degree of cooperativity. The justification for this 
assumption will be discussed later. By reasoning entirely analogous to that described 
by Nichol et aL3 and Kyprianou and Yen’ it may be shown that, in an equilibrium 
batch experiment, the protein will partition between soluble and matrix phases 
according to the relationship: 

N 

R=l+ 
c 

Kill 
KFtI + (1 + W9’ 

i=l 

(1) 

This equation may be adapted to frontal-elution chromatography by use of the 
relationship’*~r4 R = V/ Vo, in which Vis the (variable) elution volume of the protein, 
given by the centroid of the advancing protein front, and V. is the elution volume in the 
absence of any interaction with the matrix, provided that V. can be estimated. 

Eqn. 1 contains N cluster concentrations [xi] and N stoichiometric association 
constants Ki. Expressions for [xi] and Ki will now be. derived. 

The cluster-concentrations [Xi] 
The cluster concentrations may be related to the overall concentration of 

matrix-ligand, [Ml, and the dimensions of the protein molecule, as shown next. For 
mathematical simplicity (see earlier discussion) the protein will be treated as a sphere, 
and all matrix-ligands “within” this sphere assumed to be capable of binding. This 
simplification allows the cluster concentrations to be calculated by assuming a Poisson 
distribution of matrix-ligand groups (see e.g. ref. 15), i.e. the probabilityp(z) of finding 
exactly i groups in a sphere whose average content is m is given by: 

For a protein of radius r (in nm), and a concentration [M] (in mol/l) of accessible 
matrix-ligands, the average number of groups contained within the equivalent sphere 
is readily shown to be: 

m = 2.52[M]r3 (3) 
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where the numerical factor 2.52 arises from a combination of the formula for spherical 
volume (radius in nm) and Avogadro’s number. It should be noted that clusters with 
more than N groups are in theory included in this distribution, i.e., i can take all 
positive integral values. However, as will be shown later, higher-order clusters are 
negligible at the accessible matrix-ligand concentrations encountered in practice, 
therefore clusters with more than N groups are conveniently neglected. The 
concentrations of effective clusters Xi (eqn. 1) are related to the probabilities p(i) as 
follows: 

ilxil P(i) -= = [matrix-ligand in i-clusters] , 
WI 1 - P(0) [total matrix ligand] 

Combining eqns. 2 and 4 gives the cluster concentration as: 

[xi1 = m’P?l 
i - i!(e” - 1) 

(4) 

In practice [M] rarely exceeds 0.1 mM, therefore m is of the order 0.01 for a protein of 
ordinary radius (say 4 nm). To a good approximation, therefore, the expansion 
em = 1 + m may be used for the exponential term in eqn. 5. Together with eqn. 3 and 
some rearrangement, this enables eqn. 5 to be written as: 

[x.] = (2.52r3)‘-’ [Ml’ 
1 i . i! (6) 

The stoichiometric constants Ki 
For isolated matrix-ligand groups (i.e. “clusters” of 1) the stoichiometric 

association constant is given by 

K1 = NK, (7) 

where KM is the intrinsic (site) association constant for binding matrix-ligand. This is 
the constant measured by standard monovalent methods213 i.e. when the con- 
centration of matrix-ligand [M] is sufficiently small for bivalent and higher-order 
interactions to be ignored. For clusters of 2 or more, the cluster concentration pi], and 
the value of KM, govern the first contact of the N-valent protein with the cluster. 
Succeeding contacts within the cluster are governed by the much higher “local” 
concentration of matrix-groups. It is proposed, therefore, to treat each of the 
successive constants Ki (where i > 1) as the product of Pi, a statistical factor NCi (as in 
the free-solution case, see ref. 13) and an “enhanced concentration factor” E, defined 
as 

E= 
apparent matrix-ligand concn. “inside” the cluster 

cluster concentration 

Since i groups in a sphere of radius r (in nm) is equivalent to a concentration of 
i/(2.52r3) mol/l, and the cluster concentration is given by eqn. 6 above, it may be shown 
that 
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i2 . if 

E = (2.52r3 [i4],’ 
(8) 

Hence the association constants Ki are given by 

i2 . il 

K = NCi ’ E(iM ’ t2.52r3 iM1y 

where NCi = N!/[(N - i)!i!]. 

(9) 

Finally, substitution ofeqns. 6,7 and 9 into 1 yields, as the partitioning equation: 

R=l+ 
h%.dMl 

NKM[P~] + 1 + Ks[Sl + 

This 
adsorption sites. 

equation implies protein adsorption into a set of mutually-independent 

N 

c N!i(2.52r3)‘-‘(K,[M])’ 

i!{N!K’,i2[Pt] + (2.52r3[M])‘(N - z’)!(l + Ks[S])‘) 
i=2 

(10) 

RESULTS 

The following aspects of the predicted behaviour of the theoretical model 
presented above have been examined by computer modelling. 

Effect of protein radius 
A novel aspect of the present theory is its introduction of protein size as 

a determinant of partitioning behaviour through the calculation of cluster concentra- 
tions [xi], and not, as is more often the case, through gel-filtration effects. This 
size-dependence is quite sensitive; as shown in eqn. 6, [xi] varies as the (i- 1)th power 
of r3, thus a 2.1-fold increase in the radius increases p2] by lo-fold, and [x3] by 
loo-fold. The remaining discussion will focus on a four-site protein of radius 4 nm, 
typical of several glycolytic and other roughly spherical enzymes e.g. aldolase and 
lactate dehydrogenase. 

Predicted cluster concentrations for a typical multi-site protein 
The predicted cluster distribution has been examined for a four-site protein of 

radius 4 nm. Fig. 1 shows the computed cluster concentrations [xi] as a function of 
total accessible matrix-ligand concentration [Ml, based on use of eqn. 5 with the 
exponential term unchanged. It has been assumed that matrix-clusters with more than 
four groups (significant only at very high, and probably unrealistic, values of [MI) are 
“seen” by the protein as clusters of four. In Fig. la the absolute values of pi] are given 
(note log-log scales) and in (b) [Xi] is expressed as a fraction of all clusters. 

The total concentration of immobilised ligand in an affinity matrix is usually 
readily measurable, and experience has shown that, using present-day immobilisation 
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[M] mol II 

Fig. 1. Dependence of cluster concentrations Lx,] on the total concentration of accessible matrix-ligand 
groups, [Ml, for a four-site protein molecule of radius 4 nm. The calculations are based on eqn. 5 in the text; 
clusters with more than four groups are included with four-clusters. (a) Absolute values of [xi] (note log-log 
scale). (b) [xi] relative to total of all clusters. Key: X1, -;Xz, -__;Xa,.-‘_._.; x4, ‘.‘.. 

technology, values greater than lo- ’ it4 are rarely, if ever, encountered. The fraction of 
these groups that are accessible constitutes [Ml; attempts to estimate its value have 
invariably indicated that, at most, a few percent of the total may be involved. It seems 
reasonable, therefore, to take 10V3 M as a practical upper limit for [Ml. Fig. 1 shows 
that even at the top end of this range, a protein of radius 4 nm “sees” over 95% of all 
the accessible matrix-ligand as isolated, single ligand-groups. At lower, more realistic 
[Ml-values, single matrix-ligands are overwhelmingly predominant (Fig. lb). The 
small concentrations of two-clusters and three-clusters may have significant effects 
depending on protein concentration (see next paragraph), but clusters of four are 
nearly always of no practical effect, their concentrations never exceeding about lo- lo 
M. 

Effect of protein concentration 
Inspection of the summated term in eqn. 1 shows that, for clusters of 

i matrix-ligands, this term becomes negligible when the cluster concentration lXi] is 
very much smaller than the protein concentration [P,]. That is, only clusters whose 
concentrations approach or exceed that of the protein are expected to affect the 
partitioning ratio (or elution volume). Moreover, to be effective cluster concentrations 
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OOC 5 

P,,l “M CP,l pm 

Fig. 2. Scatchard-type partitioning plots for concerted-cluster and monovalent models using the same 
model parameters. Continuous lines are used for the concerted-cluster model which models a four-site 
protein of 4 nm radius. Dashed lines are used for the monovalent model, for which the single stoichiometric 
constant was taken as 4Ku. The two sets of lines coincide over the right-hand half of the diagram. Parameters 
for both plots were: [M] = 3 pcM, KM = IO5 M-l, KS = lo6 M-‘, [S] = 0 (top curves), [S] = 0.5 pM(middle 
curves) and [S] = 2 ptM (bottom curves). [Ps] = adsorbed protein; p%] = protein in solution phase. 

must be substantially higher than this when in competition with soluble ligand S, i.e. 
when the soluble ligand concentration is such that Ks[S] makes a substantial 
contribution to the denominator of eqn. 1. At the assumed upper limit for [M] (about 
lop3 M), the sum of the cluster concentrations [x,] and Ix,] is in the micromolar 
range, so partitioning or chromatography experiments that use protein concentrations 
in the micromolar range (as many do) are likely to show the effects of such higher-order 
clusters. The corollary to this is, of course, that in most cases [M] is expected to be well 
below 10e3 A4, so that unless [P,] is well below the micromolar range, the effects of 
higher-order clusters will pass unnoticed, i.e. the partitioning will appear effectively 
monovalent. This point is well illustrated in the Scatchard plots of Fig. 2, which show 
that, above a certain value of [P,], predictions of the present theory and of monovalent 
theory3 are indistinguishable. 

Predicted values of stoichiometric association constants 
Fig. 3a shows the dependence of the stoichiometric constants Ki on [Ml, for 

KM = lo4 M- ‘, KM = lo6 M- 1 (a fairly typical value and about the minimum for KM 
consistent with effective affinity chromatography16.‘7), and KM = 10s M-r. Note the 
log-log scales used. The most striking feature of this prediction is the relatively 
enormous increase on going from Ki- 1 to Ki, compared to what one would expect from 
purely statistical considerations . l3 The difference is due to the postulated “enhanced 
concentration factor”, E (see Theory), the corresponding values of which, for i=2, 
3 and 4, are given in Fig. 3b (note log-log scales). Under conditions least favourable to 
large E (i.e. [M] approaching 10e3 M), its size is several hundreds for two-clusters, and 
tens of thousands for three-clusters. More likely conditions (higher KM and/or lower 
[MI) both lead to enormously increased values of E. 

Two consequences flow from these predictions: (1) Since, for i> 1, each Ki is at 
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Fig. 3. Dependence of (a) stoichiometric cluster constants Ki and (b) “enhanced concentration” factor, E, 
on the total concentration of accessible matrix-l&and groups, [Ml. The calculations are based on eqns. 7-9 in 
the text, applied to a four-site protein of radius 4 nm, with &, set to 10“ M-’ (. . ..), lo6 M- ’ ( -) or lo* 
M-l (- - -). Reading upwards for each KM set, the lines are for K,, Kz, K3 and K4 respectively. Note 
log-log scales. 

least E times greater than the corresponding Ki- 1, we are justified in neglecting protein 
molecules interacting by fewer than i contacts with a cluster of i matrix-ligands, a basic 
assumption of the present model. That is, cluster interactions are indeed highly 
concerted. (2) The enormous Ki values suggest that one should expect “irreversible” 
binding to clusters to be quite common. This will likely arise from extremely small 
“off’ rate constants for protein-cluster interactions, since the chance of all i contacts 
being simultaneously severed is small. “Irreversible” cluster interactions permit 
a major simplification of eqn. 10. Since other terms in the numerator of eqn. 1 are 
negligible compared to &[P,], one may cancel Ki so that the summated term becomes 
[xi]/[P,], for i > 1. For most reasonable values of [M] only two-clusters are likely to be 
significant (see Fig. 1), so the partitioning ratio turns out as 

NKnnrMl 2.52r3rM12 
(11) R = ’ + NK,[P,] ;‘; ; Ks[S] + 4il A 
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In attempts to fit experimental data to the cluster model by the least-squares method, it 
has been found in several cases that this simpler equation gives as good a tit to the data, 
and generates the same parameter values as the more complex eqn. 10. This was the 
case for a re-interpretation of published data on the interaction of aldolase and 
phosphocellulose2’. 

DISCUSSION 

The equations presented above rest mainly on two assumptions: (1) interactions 
within a cluster are highly cooperative; (2) cluster concentrations follow a Poisson-type 
distribution. The idea that proximity leads to highly cooperative interactions is not 
new in biochemistry; it occurs for example in quantitative treatments of DNA 
annealing and of the helix-coil transition in proteins, and is here extended to 
multivalent affinity interactions. Invoking the Poisson distribution, i.e. assuming 
a truly random distribution of matrix-ligand groups is a more uncertain proposition, 
as a number of factors may operate to produce non-random distributions. For 
example, if the matrix-ligand is a dye, there is evidence that stacking of dye molecules 
may occur at high dye concentrations I9 Moreover, the assumption that all . 
matrix-ligands within the bounds of a cluster can bind to protein ignores the restrictive 
requirements of the spatial distribution (e.g. tetrahedral) of protein binding-sites. 
Strictly, the model as currently formulated applies to matrix-ligands that lack 
long-range translatory motion, but have considerable local freedom (short-range 
translation and rotation). Conceivably, more elaborate models of geometrical 
probability will be found to replace the Poisson distribution for other cases. 
Notwithstanding these difftculties, the concerted-cluster model represents the first 
attempt to address the problem of restricted mobility in an affinity matrix. A need for 
some such model is likely to arise soon, as modern trends in affinity chromatography 
(in particular the development of high-density, high-performance columns) will 
inevitably call for greater use of rigid, high-flow matrices (silica, controlled-pore glass, 
etc.) with consequent limitations in matrix-ligand mobility. 

I , . I 

0 0.1 0.2 0.2 
[pbl )rM 

Fig. 4. Scatchard-type plots of the interaction of aldolase and phosphocellulose, with phosphate as soluble 
ligand. The data are from Table II of ref. 6. Concentrations of phosphate were: A, 0.3 mM, 0,l.O mM; 0, 
5.0 mM. Fitted curves are for the concerted cluster model ( -) and the reacted-site-probability model 
(- -). For other details, see ref. 20. Diagram by permission of the Biochemical Society. 
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In a search for experimental evidence to support co-operativity and clustering in 
affinity partitioning, published data on the interaction of aldolase and phosphocellu- 
lose have been re-examined; a communication on this work has been published”. 
These data were originally cited in support of a theory of multivalency based on 
reacted site probability 6. In the re-examination, the values of KM and [M] were 
estimated by non-linear regression of the data in Table II of ref. 6, using both the 
concerted-cluster and the reacted-site-probability models. Fig. 4 shows the results 
plotted in the same format as Fig. 2. By the criterion of the smaller sum-of-squares of 
residual errors, the fit to the concerted-cluster model was better by an order of 
magnitude. For other details see ref. 20. Of several published sets of data examined, the 
aldolase-phosphocellulose data have shown the most pronounced upwards curvature 
at low protein concentrations, in Scatchard-type graphs. This behaviour is predicted 
by the cluster model, but not by the monovalent or reacted-site-probability models. 
While experimental data which show a steep increase in [bound protein]/[free protein] 
at low total protein concentrations clearly lit the cluster model better, data which 
follow a more near-linear relationship tend to fit all three (monovalent, cluster, 
reacted-site probability) models about equally well (by the least-squares criterion). In 
such cases, the cluster model approximates the monovalent model in predicted 
behaviour (see Fig. 2), i.e. clusters are predicted to be negligible. Upon examination, 
several other sets of published data on affinity interactions appear to exhibit this 
near-linear relationship. Before it can be decided whether or not the concerted-cluster 
theory is applicable to these systems, the experiments should be repeated with the 
emphasis on a considerably lower range of protein concentrations, where the steep 
increase in Scatchard-type graphs, denoting significant concentrations of high-affinity’ 
adsorption sites, may be evident. 
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